翻訳と辞書
Words near each other
・ Tod Strike
・ Tod Swank
・ Tod Sweeney
・ Tod Township, Crawford County, Ohio
・ Tod und Sieg des Herrn
・ Tod und Teufel
・ Tod Williams
・ Tod Williams (filmmaker)
・ Tod Williams Billie Tsien Architects
・ Tod Wodicka
・ Tod's
・ Toda
・ Toda (surname)
・ Toda bracket
・ Toda Cura para Todo Mal
Toda field theory
・ Toda Katsushige
・ Toda Kazuaki
・ Toda la Vida y Otros Grandes Exitos
・ Toda language
・ Toda lattice
・ Toda Max
・ Toda Mujer
・ Toda of Pamplona
・ Toda oscillator
・ Toda people
・ Toda Racing
・ Toda Rowing Course
・ Toda Seigen
・ Toda Shinryuken Masamitsu


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Toda field theory : ウィキペディア英語版
Toda field theory
In the study of field theory and partial differential equations, a Toda field theory (named after Morikazu Toda) is derived from the following Lagrangian:
:\mathcal=\frac\left(Killing form of a real r-dimensional Cartan algebra \mathfrak of a Kac–Moody algebra over \mathfrak, αi is the ith simple root in some root basis, ni is the Coxeter number, m is the mass (or bare mass in the quantum field theory version) and β is the coupling constant.
Then a Toda field theory is the study of a function φ mapping 2-dimensional Minkowski space satisfying the corresponding Euler–Lagrange equations.
If the Kac–Moody algebra is finite, it's called a Toda field theory. If it is affine, it is called an affine Toda field theory (after the component of φ which decouples is removed) and if it is hyperbolic, it is called a hyperbolic Toda field theory.
Toda field theories are integrable models and their solutions describe solitons.
==Examples==

Liouville field theory is associated to the A1 Cartan matrix.
The sinh-Gordon model is the affine Toda field theory with the generalized Cartan matrix
:\begin 2&-2 \\ -2&2 \end
and a positive value for β after we project out a component of φ which decouples.
The sine-Gordon model is the model with the same Cartan matrix but an imaginary β.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Toda field theory」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.